

L180 - ENCLOSED LOGGER

The L180 Enclosed Logger is a powerful control device and fully programmable data logger all in one compact unit. It comes standard with 250 MB internal memory and can be upgraded to USB Logging for additional data capacity and flexibility. The USB Logging upgrade also increases the internal memory to 500 MB.

The L180 acquires data from other devices, such as an ECU, for logging and telemetry. It can be used in a wide range of applications as a standalone logger, or integrated with other electronic devices such as displays and PDMs.

FEATURES

- Suitable for bikes, cars, marine and industrial applications
- Optional USB logging (includes 500 MB internal logging)
- Supports T2 Telemetry (optional)
- Supports Wideband Lambda from MoTeC PLMs or LTCs
- GPS Lap Timing
- Tell Tales
- Diagnostic Logging
- Preserved Channels
- Running Min/Max, Timers, PID Control, Engine Log.
- Easily integrates with MoTeC CAN based devices, such as ECUs and expanders.

ACCESSORIES

- 62206: L180 LOOM
- 61279: CABLE USB A PANEL TO MINI B (This cable is required for USB Logging)
- 61280: MOTEC 32 GB DATA PLUG
- 61292: KINGSTON 32 GB USB3 FLASH DRIVE

OPTIONAL UPGRADES

- 29702: L180 44 I/O (see Specifications and Pinout)
 - 10 extra analogue voltage inputs (AV11 to AV20)
 - 4 extra analogue temperature inputs (AT5 to AT8)
- 29715: L180 USB LOGGING + 500 MB INTERNAL LOGGING
- 29721: L180 PRO ANALYSIS
- 29724: L180 T2 TELEMETRY
- 29706: L180 ADVANCED FUNCTIONS
 - Advanced Maths
 - Channel Maths
 - 16 x 2D Tables (instead of 4)
 - 16 x 3D Tables (instead of 4)
 - 50 User conditions (instead of 20)

SPECIFICATIONS

Logging

- 250 MB internal logging memory
- Optional USB logging to a removable storage device
 - Includes upgrade to 500 MB internal memory
- Logging rates up to 1000 samples per second
- i2 Standard data analysis software included (Pro Analysis upgrade available)

Removable USB Storage Device Options

- Kingston 32 GB USB3 Flash Drive fast, low weight and low cost, not mechanically latched or waterproof.
- MoTeC 32 GB USB3 Data Plug mechanically latched, waterproof with anodised housing, ideal for exposure to the elements and vibration.

Alternative USB storage devices may be used but are not recommended.

Inputs (* denotes number available with I/O upgrade)

- 10 (20*) analogue voltage inputs:
 - 4 (8*) x 0 to 5.46 V, 1.33 mV resolution
 - 6 (12*) x 0 to 15.0 V, 3.66 mV resolution
- 4 (8 with I/O upgrade) analogue temperature inputs
 - 0 to 15 V, 3.66 mV resolution
- 4 x Digital inputs
- 2 x Switch inputs
- 4 x Speed inputs

Outputs

- 6 x low side outputs PWM or switched operation
- 1.0 Amp max, current limited, thermal overload protected

Expanders

Fully compatible with E816, E888, VIM and SVIM Expanders.

Internal Sensors

- 3-axis accelerometer, detection range: +/- 5G
- Dash temperature sensor
- Sensor supply voltage
- Battery voltage

Communications

- 4 x configurable CAN buses, with individually programmable CAN bus speeds. One can be used as RS232 Receive.
 Only two of the CAN buses support VIM/SVIM Expanders.
- 2 x Dedicated RS232 ports

Power Supply

- Operating voltage: 6 to 32 V DC
- Operating current: 0.4 A typical at 14 V (excluding sensor currents)
- · Reverse battery protection
- Battery transient protection

Sensor Supply Currents

- 5 V sensor supply: 0.25 A maximum
- 8 V sensor supply: 0.25 A maximum

Operating Temperature

- Internal: -20°C to 80°C
- Typical ambient temperature range (free air): -20°C to 65°C

Ingress Protection (IP) Rating

- IP67 dust tight, protected against water immersion (up to 30 minute submersion to depth of at least 15 cm)
- → IP rating is dependent upon the user ensuring that the connector entries are waterproof, which, as a minimum, requires all unused wire cavitites on the connector to be plugged.

Physical

- Size: 134.5 x 103.9 x 20.2 mm excluding connectors
- Weight 350 g
- 1 x 79 pin Autosport connector
- 1 x mini USB3 port (type B)

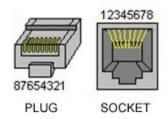
COMPATIBILITY

- MoTeC ECUs: All (some earlier models may require an additional adaptor in conjunction with the RS232 adaptor)
- MoTeC Displays/Loggers: All
- MoTeC Accessories: VIM, SVIM, E816, E888, SLM, PLM, LTC, BR2, PDM, GPS, VCS etc.
- Many non-MoTeC devices

SOFTWARE

Windows-based Manager software for device setup and management of the data logging system, providing:

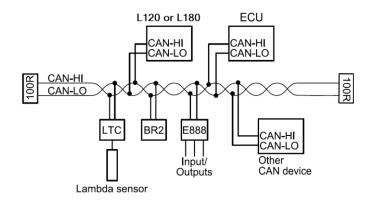
- Configuration of the inputs, outputs, data logging and calculations
- Offline generation of a configuration file that can then be sent to the device.
- Channel monitoring
- · Firmware updating and extensive help screens


i2 Data Analysis software (Standard or optional Pro) provides the tools for comprehensive data analysis.

▶ ETHERNET WIRING

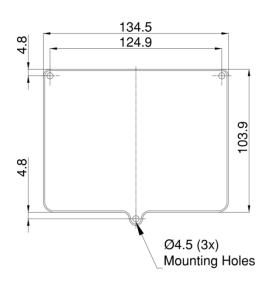
Ethernet Connector		MoTeC Loom	C185	
Pin	Function	Colour	Pin	Function
1	Ethernet TX +	Orange/White	77	Ethernet RX +
2	Ethernet TX -	Orange	78	Ethernet RX -
3	Ethernet RX +	Green/White	67	Ethernet TX +
6	Ethernet RX -	Green	68	Ethernet TX -

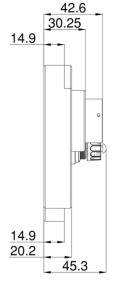
⇒ The wiring specified is the preferred cross-over configuration. However, the wiring can also be configured as straight-through. Cat 5 Ethernet cable must be used.

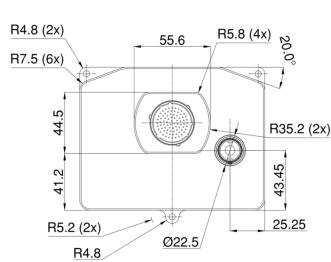

Pin Numbering

ECU WIRING

When using an M4, M48 or M8 ECU, the L180 should be connected via RS232. For some ECUs, a PCI cable may also be required.


The Display Logger should be connected via the CAN bus when using an M1 or 'Hundred Series' ECU (M400/M600/M800/M880) or M84, and any number of other CAN devices. Example:




Detailed wiring information is available in the user manual at www.motec.com/downloads.

DIMENSIONS AND MOUNTING

Measurements in mm.

Note: Do not remove any part of the casing. The case provides electromagnetic screening to avoid interference with other equipment, and is also essential for thermal management. Thermal management may be compromised if mounted in a confined space, refer to the operating specifications.

Ensure product is not stressed when mounted.

▶ PINOUT

Mating Connector: Part number 68086

Pin	Name	Standard Function	
1	AV15	Analogue Voltage Input 15 (with 44 I/O upgrade)	
2	AV16	Analogue Voltage Input 16 (with 44 I/O upgrade)	
3	AV17	Analogue Voltage Input 17 (with 44 I/O upgrade)	
4	AV18	Analogue Voltage Input 18 (with 44 I/O upgrade)	
5	AV19	Analogue Voltage Input 19 (with 44 I/O upgrade)	
6	0V	Sensor 0 V	
7	BAT-	Battery Negative	
8	BAT+	Battery Positive	
9	AUX1	Auxiliary Output 1	
10	AUX2	Auxiliary Output 2	
11	AUX3	Auxiliary Output 3	
12	AUX4	Auxiliary Output 4	
13	AUX5	Auxiliary Output 5	
14	AUX6/ LIN	Auxiliary Output 6	
15	RS232-2 TX	RS232-2 Transmit Output	
16	RS232-2 RX	RS232-2 Receive Input	
17	0V	Sensor 0 V	
18	5V	Sensor 5 V	
19	AV7	Analogue Voltage Input 7	
20	AV8	Analogue Voltage Input 8	
21	AV9	Analogue Voltage Input 9	
22	AV10	Analogue Voltage Input 10	
23	AV11	Analogue Voltage Input 11 (with 44 I/O upgrade)	
24	AV12	Analogue Voltage Input 12 (with 44 I/O upgrade)	
25	AV13	Analogue Voltage Input 13 (with 44 I/O upgrade)	
26	AV14	Analogue Voltage Input 14 (with 44 I/O upgrade)	
27	0V	Sensor 0 V	
28	5V	Sensor 5 V	
29	Not used	Not used	
30	Not used	Not used	
31	Not used	Not used	
32	Not used	Not used	
33	0V	Sensor 0 V	
34	AT1	Analogue Temp Input 1	
35	AT2	Analogue Temp Input 2	
36	AT3	Analogue Temp Input 3	
37	AT4	Analogue Temp Input 4	
38	AT5	Analogue Temp Input 5 (with 44 I/O upgrade)	
39	AT6	Analogue Temp Input 6 (with 44 I/O upgrade)	
40	0V	Sensor 0 V	

Pin	Name	Standard Function		
41	AT7	Analogue Temp Input 7 (with 44 I/O upgrade)		
42	AT8	Analogue Temp Input 8 (with 44 I/O upgrade)		
43	0V	Sensor 0 V		
44	5V	Sensor 5 V		
45	AV1	Analogue Voltage Input 1		
46	AV2	Analogue Voltage Input 2		
47	AV3	Analogue Voltage Input 3		
48	AV4	Analogue Voltage Input 4		
49	AV5	Analogue Voltage Input 5		
50	AV6	Analogue Voltage Input 6		
51	0V	Sensor 0 V		
52	DIG1	Digital Input 1		
53	DIG2	Digital Input 2		
54	DIG3	Digital Input 3		
55	DIG4	Digital Input 4		
56	0V	Sensor 0 V		
57	SW1	Switch Input 1		
58	SW2	Switch Input 2		
59	CAN4L	CAN 4 Low		
60	CAN4H	CAN 4 High		
61	0V	Sensor 0 V		
62	8V	Sensor 8 V		
63	SPD1	Speed Input 1		
64	SPD2	Speed Input 2		
65	SPD3	Speed Input 3		
66	SPD4	Speed Input 4		
67	E-TX+	Ethernet Transmit +		
68	E-TX-	Ethernet Transmit -		
69	AV20	Analogue Voltage Input 20 (with I/O upgrade)		
70	RS232-1 TX	RS232 Transmit Output		
71	CAN3L	CAN 3 Low		
72	CAN3H	CAN 3 High		
73	CAN1L	CAN 1 Low		
74	CAN1H	CAN 1 High		
75	CAN2L	CAN 2 Low/ RS232 Ground Input		
76	CAN2H	CAN2 High/ RS232 Receive Input		
77	E-RX+	Ethernet Receive +		
78	E-RX-	Ethernet Receive -		
79	RS232-1 RX	RS232 Receive Input		